

Linux kernel hacking

Process containers - cgroups

LinuxDay 2009 – Siena (Oct 24), Andrea Righi <righi.andrea@gmail.com>

mailto:righi.andrea@gmail.com

OS requirements

● Fair allocation of resources
● Equal bandwidth to logical groups

● Operating systems must provide fair allocation of:
● CPU Management
● Task management
● I/O management
● Memory management
● Network management
● ...

● The concept of task, user and group (POSIX) may be not
enough...

A typical scenario

● You're the sysadmin of a large hosting
company

● Hundreds of users grouped in different
pay-per-use classes (QoS)

● All need to get their fair share on single servers

Cheat: how to break the fairness on
a shared host?

● ulimit affects the current shell execution environment

● Create many shells with many heavy processes

Shared Server

User A User B...

Resource X

Solutions

● One physical server per user ← too much
expensive!

● One virtual server per user – VPS ← difficult to
maintain!

● OS resource management/partitioning ← OK!
● Monitor consumed resources per user or class

of user
● Perform immediate actions on policy

enforcement

Fair resource allocation

Shared Server

User A User B...

Resource X

Workload manager

Cgroup: process container

● From Documentation/cgroups/cgroups.txt:
● A cgroup associates a set of tasks with a set of

parameters for one or more subsystems
● A subsystem is a module that makes use of task

grouping facilities provided by cgroups to treat groups of
tasks in particular ways

● The cgroup infrastructure offers only the grouping
functionality

● The cgroup subsystems apply the particular
accounting/control policies to the group of tasks

Where are these “cgroups”?

● Part of the core Linux kernel (vanilla)
● Linux >= 2.6.24

● Subsystems:
● cpu, cpuacct, cpuset, memory, devices, freezer

● Source code:
● kernel/cgroup.c
● include/linux/cgroup.h
● include/linux/cgroup_subsys.h
● + various cgroup subsystems implementation...

Userspace interface: cgroup filesystem

● Mount the cgroup filesystem
● mkdir /cgroup

mount -t cgroup -o subsys1,subsys2,... none /cgroup

● Configure the cgroup subsystems using virtual files:
● ls /cgroup

subsys1.*
subsys2.*
...
tasks
notify_on_release
release_agent

● Create a cgroup instance “foo”:
● mkdir /cgroup/foo

● Move a task (i.e. the current shell) into cgroup “foo”:
● echo $$ > /cgroup/foo/tasks

Task selection

● Show the list of PIDs contained in a cgroup,
reading the file “tasks” in the cgroup filesystem
● PIDs in the root cgroup:

$ cat /cgroup/tasks
1
2
3
...

● PIDs in the cgroup “foo”:

$ cat /cgroup/foo/tasks
2780
2781

Task selection: examples

● Example #1 – count the number of PIDs in cgroup
“foo”:

wc -l /cgroup/foo/tasks
4

● Example #2 – kill all the PIDs contained in the
cgroup “bar”:

kill $(cat /cgroup/bar/tasks)

● Example #3 – set the nice level of the processes
contained in cgroup “baz” to 5:

renice 5 -p $(cat /cgroup/baz/tasks)

Resource management

● Account/control the usage of system resources:
● CPU
● Memory
● I/O bandwidth
● Network bandwidth
● Access permission to particular devices
● ...

● We need a cgroup subsystem for each
resource

Cgroup vs Virtualization

● Cgroups are a form of lightweight virtualization
● While virtualization creates a new virtual machine upon

which the guest system runs, cgroups implementation
work by making walls around groups of processes

● The result is that, while virtualized guests each run their
own kernel (and can run different operating systems
than the host), cgroups all run on the same host's
kernel

● Cgroups lack the complete isolation provided by a full
virtualization solution, but they tend to be more efficient!

CPU management

● Cgroup CPU subsystem
● Controlled by the Completely Fair Scheduler – CFS

● Give the same CPU bandwidth to the cgroup
“multimedia” and the cgroup “browser”:
● echo 1024 > /cgroup/browser/cpu.shares
● echo 1024 > /cgroup/multimedia/cpu.shares

● Q: is it really fair?

Without CPU cgroup subsystem
(10 tasks in “multimedia” and 5 tasks in “browser”)

%CPU %MEM TIME+ COMMAND
 7 0.0 0:00.82 cpuhog-multimedia
 7 0.0 0:00.80 cpuhog-multimedia
 7 0.0 0:00.86 cpuhog-browser
 7 0.0 0:00.88 cpuhog-browser
 7 0.0 0:00.86 cpuhog-browser
 7 0.0 0:00.89 cpuhog-browser
 7 0.0 0:00.81 cpuhog-multimedia
 7 0.0 0:00.82 cpuhog-multimedia
 7 0.0 0:00.78 cpuhog-multimedia
 7 0.0 0:00.80 cpuhog-multimedia
 7 0.0 0:00.81 cpuhog-multimedia
 7 0.0 0:00.82 cpuhog-multimedia
 6 0.0 0:00.87 cpuhog-browser
 6 0.0 0:00.80 cpuhog-multimedia
 6 0.0 0:00.81 cpuhog-multimedia

multimedia => 66.66%
browser => 33.33%

With CPU cgroup subsystem
(10 tasks in “multimedia” and 5 tasks in “browser”)

%CPU %MEM TIME+ COMMAND
 10 0.0 0:00.51 cpuhog-browser
 10 0.0 0:00.50 cpuhog-browser
 10 0.0 0:00.51 cpuhog-browser
 10 0.0 0:00.50 cpuhog-browser
 10 0.0 0:00.50 cpuhog-browser
 5 0.0 0:00.24 cpuhog-multimedia
 5 0.0 0:00.24 cpuhog-multimedia
 5 0.0 0:00.24 cpuhog-multimedia
 5 0.0 0:00.23 cpuhog-multimedia
 5 0.0 0:00.23 cpuhog-multimedia
 5 0.0 0:00.22 cpuhog-multimedia
 5 0.0 0:00.23 cpuhog-multimedia
 5 0.0 0:00.23 cpuhog-multimedia
 5 0.0 0:00.23 cpuhog-multimedia
 5 0.0 0:00.22 cpuhog-multimedia

multimedia => 50.00%
browser => 50.00%

Memory management

● Enable control of anonymous, page cache (mapped
and unmapped) and swap memory pages
● Memory hungry applications can be limited to a smaller

amount of memory
● No more downtime due to global OOM in shared hosts!

● Configuration:
● echo 128M >
/cgroup/browser/memory.limit_in_bytes

● echo 256M >
/cgroup/multimedia/memory.limit_in_bytes

I/O management: io-throttle patch

● Under development: not yet included in the
mainline kernel!

● Approach: block I/O requests if a cgroup
exceeds its own ration of bandwidth

● Uses the cgroup virtual filesystem to configure
block device BW and iops limit:
● echo /dev/sda:$((10 * 1024 * 1024)):0 >
/cgroup/browser/blockio.bandwdith

● echo /dev/sda:1000:0 >
/cgroup/browser/blockio.iops

Cgroup io-throttle: overview

httpd

Task Cgroup A Task Cgroup B

io-throttle
cgroup controller

Traffic class #1
20MB/s limit

Task class #2
5MB/s

Block I/O subsystem

ftpd

bash

firefox

Is throttling an effective approach?

Advantages of throttling

● Interactivity (i.e. desktop)
● QoS / Pay-per-use services
● Prevent resource hog tasks (typically in hosted

environments the cause of slowness are due to
the abuse of a single task / user)

● Reduce power-consumption
● More deterministic performance (real-time)

Linux I/O subsystem (overview)

● Processes submit I/O requests
using one (or more) queues

● The block I/O layer saves the
context of the process that
submit the request

● Requests can be merged and
reordered by the I/O scheduler
● Minimize disk seeks, optimize

performance, provide fairness
among processes

Block device I/O in Linux

BIOs

● The kernel submits I/O
requests in two steps
● Create a bio instance to

describe the request placed on
a request queue (the bio
points to the pages in memory
involed in the I/O operation)

● Process the request queue
and carries out the actions
described by the bio

Submit I/O requests: code flow

Elevator (elv_merge, plug/unplug queue, ...)

Kernel (high-level layers)

I/O scheduler (noop, deadline, anticipatory, CFQ)

Dispatch I/O requests

● I/O schedulers:
complete
management of the
request queues
(merge + reordering)

● Available I/O
schedulers:

● noop (FIFO)
● Deadline
● Anticipatory
● CFQ

I/O schedulers

● Mission of I/O schedulers: re-order reads and
writes to disk to minimize head movements

Slower Faster

Memory pages <-> disk blocks

Main memory

Storage

R

- O_DIRECT
- Miss in page cache

- readahead
- swap-in

W

- O_DIRECT
- balance_dirty_pages()

- pdflush()
 [per-bdi flusher threads]
- swap-out

sync

async

sync

async

sync = same I/O context of the userspace task
async = different I/O context

Data synchronization

How does io-throttle work?

● Two type of I/O:
● Synchronous I/O (O_DIRECT + read)
● Asynchronous I/O (writeback)

● Two stages:
● I/O accounting (sensor)
● I/O throttling (actuator)

Synchronous I/O
Account

all
Cgroup I/O

Throttle
synchronous

Cgroup I/O

Asynchronous I/O (page writeback)

Throttle
memory writes

if cgroup
exceeded
I/O limits

Some numbers

1 2 4 8

 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

2.6.31

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

1 2 4 8

 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

2.6.31

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

Sequential-readers (cgroup #1) VS Sequential-reader (cgroup #2)

Random-readers (cgroup #1) VS Sequential-reader (cgroup #2)

1 2 4 8

 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

2.6.31-io-throttle (10MB/s BW limit)

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

1 2 4 8

 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

2.6.31-io-throttle (10MB/s BW limit)

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

1 2 4 8

 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

2.6.31

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

1 2 4 8

 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

2.6.31

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

Sequential-readers (cgroup #1) VS Random-reader (cgroup #2)

Random-readers (cgroup #1) VS Random-reader (cgroup #2)

1 2 4 8

 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

2.6.31-io-throttle (10MB/s BW limit)

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

1 2 4 8

 MB/s

2 MB/s

4 MB/s

6 MB/s

8 MB/s

10 MB/s

12 MB/s

2.6.31-io-throttle (10MB/s BW limit)

Cgroup #1
Cgroup #2

Tasks in Cgroup #1

B
W

Conclusion

● cgroup framework
● Put processes in logical containers

● cgroup subsystem
● Resource accounting and control

● Advantages: lightweight isolation, simplicity
● Disadvantages: no way to run different kernels/

OS (like a real virtualization solution)

References

● Linux cgroups documentation
● http://lxr.linux.no/#linux+v2.6.31/Documentation/cgroups/

● Which I/O controller is the fairest of them all?
● http://lwn.net/Articles/332839/

● cgroup: io-throttle controller (v16)
● http://thread.gmane.org/gmane.linux.kernel/831329

● io-throttle patchset
● http://www.develer.com/~arighi/linux/patches/io-throttle/

● For any other question:
● mailto:righi.andrea@gmail.com

http://lxr.linux.no/#linux+v2.6.31/Documentation/cgroups/
http://lwn.net/Articles/332839/
http://thread.gmane.org/gmane.linux.kernel/831329
http://www.develer.com/~arighi/linux/patches/io-throttle/
mailto:righi.andrea@gmail.com

Appendix: How to write your own
cgroup subsystem?

● Basically we need to change the following files:
● init/Kconfig: kernel configuration parameters

(general setup)
● include/linux/cgroup_subsys.h: cgroup

subsystem definition
● kernel/cgroup_example.c: cgroup subsystem

implementation
● kernel/Makefile: Makefile of the core kernel

components
● Finally, add the appropriate hooks into the kernel

Questions?

